If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-28x-36=0
a = 8; b = -28; c = -36;
Δ = b2-4ac
Δ = -282-4·8·(-36)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-44}{2*8}=\frac{-16}{16} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+44}{2*8}=\frac{72}{16} =4+1/2 $
| u11+3=12 | | ((4x+x)x)+x-48=0 | | 5n+23=73 | | v−(−18)=−7 | | -6x-7=11+6x | | -5h=9 | | 6m2=+6m-9m2 | | x-29=-3x-89 | | -3x-5+6x=22 | | 2(m-4)=12m | | -4p=-3p+28 | | 5(-3x+6)=-9(3x+2)+12x | | 5/2c-7=1/2+4 | | 9(x+109=3(x+6) | | (9x-2+(3x-10)=180 | | 8a=4(a-a) | | 8h+16-2h=4h | | 200x=2,000 | | 2a+3-8a=8a | | −5x+10=−90 | | 2^4x+4=2048 | | 3r+13=22 | | 10x+4x=3 | | 5u+13=18 | | 6-6k-12=18 | | 14+8x=15x-7 | | 12=x/4+2 | | -2.5(x+5)=-13.4+6.5x | | 4(p−8)=−32+4p | | z=-5+2z | | 3x-8=8x-5 | | 65x-2.5=3-5x+6 |